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Abstract

Eulerian and j goniometers, as well as real diffrac-
tometers with unavoidable misalignments of their shafts,
are described as special cases of a general four-circle
normal-beam equatorial diffractometer. The perform-
ance of these instruments can be improved by de®ning
rotations about their real axes. Methods for transforma-
tion of the setting angles between the geometries based
on different goniometer axes and procedures for
positioning re¯ections are described. Analytical solu-
tions for the transformations between Eulerian and the
general version of the normal-beam equatorial diffrac-
tometer are presented.

1. Introduction

For several decades, diffractometers have been the
fundamental tools in crystallographic research. Most
common and commercially available are four-circle
diffractometers, in which the detector moves in the
horizontal (equatorial) plane and the incident beam is
normal to the h axis and to crystal oscillation axis x; the
so-called normal-beam equatorial geometry (Arndt &
Willis, 1966). The geometry of these diffractometers is
the main subject of this paper. It will be shown that
designs of such four-circle diffractometers, Eulerian and
j, can be described within the single concept of a
general equatorial diffractometer (GED). Additionally,
the axes of the GED are de®ned individually, which
applies to real diffractometers with possible misalign-
ment of their shafts. This particularly concerns the u and
h axes: owing to the mechanical limitations, the short u
shaft can often be tilted by several hundredths of a
degree to the h shaft. In the general formalism, the
inclination between u and h is one of the goniometer
parameters, it is included explicitly in the formulae for
setting-angle calculations and therefore causes no errors
in results, even if it reaches several degrees. However,
the general formalism introduces some complications
into the analytical formulae of the goniometer setting
angles. In this report, general conditions for rotations of
diffractometer axes are discussed. Convenient appa-
ratus-dependent calculation procedures for setting
angles and two general methods of the transformation of
setting angles between geometries based on different

axes are described. The transformations provide a
means of easy crystal positioning of the axes on a real
instrument and of analyzing these data while referring
e.g. to the idealized Eulerian cradle. Analytical solutions
for such transformations between the Eulerian and
GED geometries are presented.

In this work, we have adapted the nomenclature for
representations of vectors and rotations after Busing &
Levy (1967), but in our notation vectors e1 and e2 of the
laboratory system correspond to vectors e2 and ÿe1,
respectively, of the laboratory system in the quoted
work. We also changed the sign of the v axis: in our
notation, all positive angles correspond to left-handed
rotations about the corresponding axes of the laboratory
system, whereas, in Busing & Levy (1967), the v axis is
right-handed. Table 1 lists the symbols used in the text.

2. Normal-beam equatorial geometries

2.1. The Eulerian geometry

The design of the ®rst commercially manufactured
four-circle diffractometers was based on Euler's concept
of orientation procedure in three-dimensional space,
hence the so-called Eulerian geometry. Its most impor-
tant feature is orthogonality of the diffractometer axes
v and x. The schematic representation of such a goni-
ometer is shown in Fig. 1.

The u axis is collinear with x when v � 0�, but it can
be rotated about the v axis to assume any angle between
0 and 360�. The Eulerian geometry has been compre-
hensively described in the literature (e.g. Busing & Levy,
1967; Hamilton, 1974).

Owing to the orthogonality of the axes, calculations of
the setting angles are simple and the operation of the
Eulerian cradle often corresponds to requirements for
positioning the crystal. Thus, the `natural' modes of
Eulerian goniometer operation are commonly in use. In
the bisecting mode of data collection, the Eulerian x
axis is not used for the crystal positioning and it is ®xed
to zero. Consequently, the v circle is perpendicular to
the crystal scattering plane and bisects the angle formed
by the incident and diffracted beams. The sequence of
the u and v rotations positioning the crystal in the
bisecting mode is shown in Fig. 2. In the parallel mode,
x � 90� and the v circle is parallel to the crystal scat-



tering plane. The most ef®cient mode for measuring
re¯ections for a crystal enclosed in a diamond-anvil
high-pressure cell (Merrill & Bassett, 1974) requires that
the Eulerian u angle is ®xed to zero (Finger & King,
1978). The procedure of positioning Eulerian diffrac-
tometer angles for this u � 0� mode, when the u angle is
redundant, is shown in Fig. 3. Other geometries of

goniometers do not allow these modes of positioning the
crystals to be so clearly de®ned as in the Eulerian
geometry.

2.2. The j geometry

The j goniometer, designed by Poot (1972) of Enraf±
Nonius, has now become as common as the Eulerian
goniometer. The typical construction of a j goniometer
is shown in Fig. 4. The non-orthogonal � angle between
the j and h axes considerably changes the analytical
description of rotations. Usually, an angle � of 50� is
chosen, although other values of � are also used, e.g.
� � 55� in diffractometer CRYSTAN-GM 6.0 manu-
factured by MAC Science Co., Ltd. The x � 0� and
u � 0� positioning modes described above for the
Eulerian geometry cannot be straightforwardly obtained
for a j goniometer. However, the formulae for trans-
formations between the Eulerian and j geometries are
relatively simple and therefore often crystal positioning
rotations are calculated in the Eulerian geometry, e.g. in
the bisecting mode, and then transformations to the
equivalent j rotations are calculated. The speci®c
features of the j geometry can be illustrated by a
procedure positioning vector h into the diffracting
position by using a simple sequence of j-goniometer
rotations presented in Fig. 5, analogous to those shown
above for an Eulerian cradle. This j setting is different
from any of the settings described for the Eulerian
diffractometer and is more prone to convergence of the
u shaft with the incident beam on either side of the
crystal (leading either to collisions with the collimator or
to increased background due to the primary beam
scattered from the goniometer head). A variety of other
sequences of rotations, e.g. involving only two of the
three goniometer axes, can be used for this goniometer,
however the latter are not suf®cient for positioning all
re¯ections.

2.3. The GED geometry

Kucharczyk et al. (1986) modi®ed the j diffractometer
by allowing the uj axis not to coincide with the h axis
(see Fig. 6). An additional instrumental parameter,
angle �, describes the tilt between the uj and h axes. It
can be seen from Fig. 6 that a single angle � suf®ces for
measuring the misalignment of the uj and h axes, when
axis uj and the � angle are contained in the e1e3 plane. If
the uj axis is off the e1e3 plane, it can be moved to this
plane by a rotation of j; then the zero position of the j
axis should be rede®ned.

The � 6� 0 modi®cation imposes fewer mechanical
restrictions on the instrument and enhances the general
character of the mathematical description of rotations
and setting angles for such a goniometer. This is
achieved at the expense of increased complexity of
calculations in this geometry. This can be illustrated by
the procedure bringing a given vector h to its diffraction

Table 1. Nomenclature

GED General equatorial diffractometer, in which
angle � between axes h and n can assume any
values and axes h, xn and un are not
constrained to coincide when the goniometer
is zero positioned. In this paper, only axes h
and un are allowed to diverge by angle �

Ang�x; y� Trigonometric function atan�x; y�, introduced
by Busing & Levy (1967)

h Reciprocal-vector representation in the refer-
ence system of Cartesian axes rigidly attached
to the u axis

hh Reciprocal-vector representation in the refer-
ence system of Cartesian axes rigidly attached
to the h axis

ek kth versor, i.e. the unit vector, of the
laboratory reference system

Gi Goniometer geometry denoted i (i � v for an
Eulerian goniometer, i � j for a j goniometer
and i � n for a GED goniometer)

gi;k kth axis of a goniometer designed in Gi

geometry
Si;k Type of positioning mode named k in Gi

geometry
ai;k Rotation angle about axis k in geometry Gi

am
i;k Rotation angle about axis k in Si;m positioning

mode
a

w
i;k Rotation angle about axis gi;k, used to

construct a w rotation in Gi geometry
Ri Rotation matrix for a Gi-geometry goniometer
R�g; a� Matrix representation of rotation through

angle a about vector g
Ri;k�h� Matrix representation of the rotation setting

vector h in a diffraction position using Si;k

positioning mode in Gi geometry
Di;k Domain of operator Ri for a given Si;k

positioning mode
<3 Euclidean three-dimensional space
I�Si;k ! Sj;k� Intergeometrical transformation of setting

angles where Si;k is the `source' positioning
mode and Sj;k is the `destination' one

a; a Arbitrary axis; angle or rotation about this axis
w; w Axis of rotation coincident with the scattering

vector; respective rotation angle
u, v, x; u, v, x Eulerian goniometer axes; respective rotation

angles; where x is the deviation of the
scattering vector from the v-circle plane
(Busing & Levy, 1967). In many instruments,
x is differently de®ned, as the angle between
the v axis and e1.

uj, j, xj; uj, j, xj j goniometer axes; respective rotation angles
un, n, xn; un, n, xn GED goniometer axes; respective rotation

angles
� Angle between axes j and h in a j geometry

or, more generally, between axes n and h in a
GED goniometer

� Angle between axes un and h in a GED
geometry
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position by applying a sequence of rotations about the
goniometer axes. One such procedure is shown in Fig. 7.

The diffractometer with misaligned uj and h axes may
be further generalized by allowing the � angle to assume
any value between 45 and 90�. A diffractometer so
designed can be described by the � and � angles and will
be referred to as a general equatorial diffractometer
(GED). It comprises the Eulerian and j geometries as
special cases when � � 90�, � � 0� and � � 50�, � � 0�,
respectively. For the purpose of the general discussion to
follow, the axes of this diffractometer will be denoted un,
n, xn and h.

3. General equatorial diffractometer

3.1. The GED goniometer geometry

The principal task of a goniometer is to reorient a
sample crystal to its scattering positions. In other words,
a given reciprocal-space vector must be rotated to the
diffraction direction hh � �0; jhj; 0�. Such a setting can
be obtained as a combination of rotations about three
cradle axes. A set of axes can be de®ned by their unit
vectors:

Gi � fgi;1; gi;2; gi;3g: �1�
These three vectors describe a diffractometer geometry.
A setting rotation operator can be expressed in terms of
the Gi geometry in the following form:

Ri � R�gi;1; ak
i;1�R�gi;2; ak

i;2�R�gi;3; ak
i;3�; �2�

where fak
i;mg are values of the setting angles.

The in®nite number of possible choices of the
diffractometer angles sets for a given vector h corre-
sponds to the possibility of rotation about the scattering

vector, the so-called w rotation. The in®nity of the
positioning modes can be described as

Si;k �
ak

i;1�h�
ak

i;2�h�
ak

i;3�h�

8<: ; �3�

where index k labels different settings. The setting
angles in different positioning modes differ only by a w
rotation one from another.

The choice of the goniometer axes set Gi is not arbi-
trary because it affects the accessibility to the reciprocal
space as well as the ability to perform w rotations. In the
de®nition of the goniometer rotations operator, the
inaccessible reciprocal-space regions should be treated
separately because of the matrix indeterminacies.
Therefore, for a given goniometer geometry Gi , we can
de®ne a goniometer rotation operator in such a way that
it becomes a zero matrix for inaccessible regions. The
reciprocal space can then be divided as follows:

<3 � Di;k [ Li;k

Li;k � LG
i [ LS

i;k [ LC
� 	 �4�

8h2Li;k
Ri;k�h� � 0;

where:
Di;k is the accessible reciprocal-space region for which

the goniometer rotation operator is de®ned according to
the positioning mode, thus

Di;k � <3 n Li;k;

LG
i is the reciprocal-space region inaccessible for a

given goniometer geometry. Geometries for which
LG

i 6� f;g are of no practical interest. For example, a
GED goniometer with � � 0� and � < 45�, or � � 50�

Fig. 1. Schematic drawing of the Eulerian four-circle diffractometer.
All the goniometer axes u, v and x are shown in their zero positions:
axes u and x are parallel and v is perpendicular to x and h.

Fig. 2. Procedure of positioning reciprocal vector h into the diffracting
position in the bisecting mode using an Eulerian cradle. First, the h
vector is rotated about the u axis to the e2e3 plane, and then it is
rotated about the v axis and placed along vector e2. The x axis is
redundant in this procedure.
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and � > 10� both have LG
i 6� f;g, i.e. the reciprocal

vectors close to the e3 axis could not be brought into a
scattering position;

LS
i;k is the reciprocal-space region inaccessible for a

given positioning mode. If LG
i � f;g, then each vector

h 2 LS
i;k may be accessed in a different positioning mode.

Usually, LS
i;k 6� f;g for the settings transformed from

another geometry;
LC is the reciprocal-space region inaccessible due to

experimental restrictions, e.g. such as imposed by the
high-pressure chamber of a Merrill±Bassett diamond-
anvil cell (Merrill & Bassett, 1974).

3.2. Transformations between goniometer geometries

Intergeometrical transformations between two goni-
ometers Gi and Gj may be indispensable in experimental
practice. One may wish to reproduce crystal orientation
on two different diffractometers, as in the method in
which the w-angle de®nition is independent of the
crystal mounting or diffractometer type (Schwarzenbach
& Flack, 1992a,b) or when an experiment is planned in
advance assuming a convenient diffractometer geometry
and then another type of diffractometer is used for
measurements, also with misaligned axes. In other
words, a diffractometer geometry Gj is to be used for an
experiment, whereas the experiment requires the posi-
tioning mode Si;k designed in another Gi geometry.
Owing to its simplicity, the Eulerian diffractometer is
often chosen as a reference for the non-Eulerian
geometries (see x2.2 above). For example, one may wish
to collect data in the bisecting mode using the GED
goniometer. Below, in xx3.2.1 and 3.2.2, we present two
methods for the intergeometrical transformations of
setting angles. The explicit formulae derived for these

transformations between the ideal Eulerian and GED
goniometers for two Eulerian positioning modes are
given in x4.

It should be noted that the problem of inter-
geometrical transformations in the form presented
above always has two solutions corresponding to two
equivalent rotations about a virtual axis a by angle a and
angle a0 � aÿ 2�. This means that for a given rotation
R�a; a� also the opposite rotation R�a; a0� will result in
the same ®nal position, although the path traced by
vector h during the rotation is different. This implies
that the intergeometrical transformations always have
two equivalent solutions.

3.2.1. The direct approach. The straightforward
approach to the transformation problem of ®nding
cradle rotations in a Gj geometry from the known rota-
tions in geometry Gi can be de®ned by the following
equation:

8h2Di;k;\Dj;k
8h02<3 Ri;k�h�h0 � Rj;k�h�h0: �5�

This condition requires that if some vector h is posi-
tioned by a rotation Ri;k in a Gi geometry and also an
equivalent Rj;k rotation in geometry Gj is considered,
then all the other vectors should assume identical
orientations in the laboratory system after either of
these rotations.

The right side of equation (5) depends on the refer-
ence geometry, thus, if one wants to solve it for a given
geometry, the following substitution can be made:

�Rj;k�mn � �M�mn; �6�
where M is an unspeci®ed matrix used to make the
solution of equation (5) independent of the reference
geometry. While solution of the goniometer equation,
i.e. (6), for the j goniometers with � � 0� is relatively

Fig. 3. Mode u � 0� of the h-vector positioning: ®rst it is rotated about
v to the e1e2 plane, and then it is rotated about x to superimpose
with e2. The u axis is redundant.

Fig. 4. Schematic drawing of a j goniometer. The goniometer axes are
denoted uj, j and xj; � is the angle between axes j and h.
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simple, changes in � considerably contribute to this
complication. An iterative approximated procedure of
solving the last equation for the general goniometer,
with no restrictions set on the orientation of axes (in the
GED, axes h and xn are restricted to coincide for
n � 0�), was described by Thomas (1990). In x4, we
present the analytical solution of (6) for the GED
goniometer. This solution in general can be written as

I�Si;k ! Sj;k� �
aj;1 � aj;1�fai;mg�
aj;2 � aj;2�fai;mg�
aj;3 � aj;3�fai;mg�

8<: : �7�

The Gj geometry setting angles calculated from the
angles derived in the Gi geometry retain the crystal
orientation with respect to the laboratory system. In this
method, no positioning mode speci®c for the Gj

geometry is needed.
3.2.2. The w-rotation approach. If goniometer Gj has

its unique positioning mode called Sj;l (e.g. see xx2.2 and
2.3), which is different from the required positioning
mode Si;k of the reference diffractometer, another
method of transformation can be applied. Because
different positioning modes differ only by a w rotation,
we can write the following equation:

8h2Di;k\Dj;k
8h02<3

Ri;k�h�h0 � R�w;w�Rj;l�h�h0: �8�
As in (5), the required rotation Ri;k of the reference
geometry reorients the whole reciprocal space in the
same way as the product of an unknown w rotation
R�w;w� and the known rotation Rj;l de®ned in the Gj

geometry.
Solution of (8), w, provides the difference between

the original and required settings. In some special
reference positioning modes, presented in x4, w depends
only on the Gj setting angles, but in general it depends on
the setting angles of both Gj and Gi.

The w rotation, expressed by means of the Gj cradle
rotations, has the following form:

Rj�w;w� � R�gj;1; a
w
j;1�R�gj;2; a

w
j;2�R�gj;3; a

w
j;3�: �9�

It can be solved by the method presented by Busing &
Levy (1967). Three shaft rotations faw

j;mg of goniometer
Gj combine into the w rotation. Therefore, the inter-
geometrical transformation can be written as

I�Sj;l ! Sj;k� �
aj;1 � al

j;1 � a
w
j;1

aj;2 � al
j;2 � a

w
j;2

aj;3 � al
j;3 � a

w
j;3

8<: : �10�

Such an approach is suitable when modi®cations of a
given positioning mode are required, e.g. for avoiding
errors in re¯ection-intensity measurements due to
simultaneous diffraction by diamond anvils in high-
pressure experiments (Loveday et al., 1990). The crystal
positioned in the u � 0� mode can be simply rotated by
small w values.

4. Transformations between the Eulerian and GED
geometries

We denote the GED goniometer axes as gn;1 � xn,
gn;2 � n, gn;3 � un and the Eulerian goniometer axes as
gv;1 � x, gv;2 � v, gv;3 � u. Then the axial operators for
the GED could be de®ned in the following way:

Rn�xn;xn� � R�e3;xn�
Rn�n; n� � R�e2;ÿ��R�e3; n�R�e2; ��

Rn�un; un� � R�e2;ÿ��R�e3; un�R�e2; ��:
�11�

The elements of the Eulerian-goniometer rotation
matrix Rv follow from Busing & Levy (1967), where the
changes described in x1 and Table 1 are:

�Rv�11
� cos�u� cos�x� ÿ sin�u� sin�x� cos�v�

�Rv�12
� cos�x� sin�u� � cos�v� cos�u� sin�x�

�Rv�13
� sin�x� sin�v�

�Rv�21
� ÿ sin�u� cos�x� cos�v� ÿ cos�u� sin�x�

�Rv�22
� cos�u� cos�x� cos�v� ÿ sin�u� sin�x�

�Rv�23
� cos�x� sin�v�

�Rv�31
� sin�u� sin�v�

�Rv�32
� ÿ cos�u� sin�v�

�Rv�33
� cos�v�:

�12�

4.1. The direct approach

Below, the solution of (6) for the case of GED
geometry is presented. The explicit form of the GED
goniometer equation takes the form

Rn � Rn�xn;xn�Rn�n; n�Rn�un; un� � M: �13�

Fig. 5. Sequence of rotations about the j-goniometer axes uj, j and xj

positioning vector h along e2.
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The solution of this equation consists in ®nding the
formulae combining xn, n and un with the M-matrix
elements.

While cos�n� is easy to determine, it is more compli-
cated to obtain sin�n� needed for de®ning the sign of n.
To simplify the calculations, the following procedure is
employed to determine n:

(a) determine the jnj value from cos�n�;
(b) use n � �jnj to determine the un value;
(c) check if the sign choice was correct by comparing

some independent xn element of Rn with the corre-
sponding element of the M matrix (in this step, the M
element should be replaced by the appropriate element
of the Eulerian rotation matrix Rv);

(d) if this test result is positive, then n � �jnj, if not,
the sign of n sould be changed to n � ÿjnj.
The relevant formulae are listed below:

n � �jnj � Ang�sin�n�; cos�n��; �14�

where

cos�n� � M31 sin��� ÿM33 cos��� � cos��� cos��ÿ ��
sin��� sin��ÿ ��

sin�n� � sin�jnj�:

The un value for n � �jnj is

un � Ang�sin�un�; cos�un��; �15�

where

sin�un� �
ÿ cos���AM32 � B�M31 � sin���D�

cos����A2 � B2�
cos�un� �

�M31 � sin���D��ÿA� ÿM32 cos���B
cos����A2 � B2�

A � cos��� sin��ÿ �� ÿ cos�n� sin��� cos��ÿ ��
B � ÿ sin�n� sin���
D � cos��� cos��ÿ �� � cos�n� sin��� sin��ÿ ��:

A condition testing the sign of n can be written as

jÿB cos�un� ÿ A sin�un� �M32j � 0: �16�

Then the formula for determining xn takes the form

xn � Ang�sin�xn�; cos�xn��; �17�

where

sin�xn� � ÿ ��EM23 � FM13� cos���
ÿ �EM21 � FM11� sin�����E2 � F2�ÿ1

cos�xn� � ��EM13 ÿ FM23� cos���
ÿ �EM11 ÿ FM21� sin�����E2 � F2�ÿ1

E � cos�n� cos��� sin��ÿ �� ÿ sin��� cos��ÿ ��
F � sin�n� sin��ÿ ��:

Equations (14)±(17) provide the recipe for obtaining the
setting angles in any positioning mode. The important
feature of this solution is that it is independent of both
the reference geometry and the reference position-
ing mode. To obtain transformation I�Sv;k ! Sn;k�
between the Eulerian reference and GED geometries,
the following substitution should be made:

M � Rv: �18�

For transformations from other geometries, M should be
replaced by appropriate goniometer rotation matrices.

4.2. The w-rotation approach

This section presents the solutions of (8) for the GED
geometry and the positioning mode described in Fig. 7.
The positioning mode is indicated by the index `n'. The
Eulerian bisecting mode and mode u � 0� are chosen
for reference.

(i) GED�n� ! GED�u � 0��I�Sn;n ! Sn;u�0� �

w � ÿAng�p2; p1�; �19�

where

Fig. 6. Schematic drawing of the GED goniometer. The goniometer
axes are denoted un, n and xn, � is the angle between axes n and xn,
analogously to a j goniometer, and � describes the misalignment
between un and h.
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p1 � p11 � p12 � p13

p2 � p21 � p22 � p23

p11 � cos��ÿ ���cos�un� cos���p112 � p111�
p111 � cos�xn� sin��� sin���
p112 � cos�xn� cos�n� cos��� ÿ sin�xn� sin�n�
p12 � ÿ sin��ÿ ���cos�xn�p122 ÿ p121�

p121 � sin�xn� sin�n� sin���
p122 � cos�n� sin��� cos��� ÿ cos�un� cos��� sin���
p13 � ÿ sin�un� cos���p131

p131 � cos�xn� sin�n� cos��� � sin�xn� cos�n�
p21 � cos��ÿ ���p211 ÿ sin��� cos����

p211 � cos�un� cos�n� cos��� sin���
p22 � ÿ sin��ÿ ���p221 � p222�

p221 � cos�un� cos��� cos���
p222 � cos�n� sin��� sin���
p23 � ÿ sin�un� sin�n� cos��� sin���

(ii) GED�n� ! GED�x � 0��I�Sn;n ! Sn;x�0� �
w � Ang� f1; f2�; �20�

where

f1 � f11 � f12 � f13 ÿ f14 ÿ f15

f2 � f21 � f22 � f23

f11 � f111�cos�un� ÿ 1�
f111 � cos�xn� cos�n� sin��� cos��� cos2���
f12 � cos����f123f124 � f122 � f121�

f121 � ÿ sin�un� cos�xn� sin�n� sin���
f122 � sin�xn� sin�n� sin��� cos����1ÿ cos�un��
f123 � cos2��� � cos�un� sin2���
f124 � cos�xn� sin����cos�n� ÿ 1�
f13 � cos�xn� sin��� cos��� sin2����cos�un� ÿ 1�
f14 � f141�cos2��� � cos�un� sin2����

f141 � sin�xn� sin�n� sin���
f15 � sin�un� sin�xn� cos�n� sin���
f21 � cos2����cos2��� � cos�un� sin2����
f22 � f221�cos�un� ÿ 1��cos�n� ÿ 1�

f221 � sin��� cos��� sin��� cos���
f23 � sin����f231 ÿ sin�un� sin�n� sin����

f231 � cos�n� sin����cos2��� � cos�un� sin2����:

�21�

The formulae presented above allow two Eulerian
positioning modes to be obtained on a GED diffrac-
tometer by simply adding to the original GED angles the

further rotations of the goniometer axes, positioning the
crystal at the required w's, according to equation (10).

5. Conclusions

A general description of a four-circle diffractometer
goniometer, comprising the Eulerian and j goniometers
as special cases, and allowing the u and h axes not to be
parallel, has been presented. Precise explicit formulae
for setting diffractometer angles and transforming them
between diffractometer geometries have been derived
and successfully applied on four-circle and six-circle
KUMA GED diffractometers. Their application
improves the accuracy of the goniometer operations and
of the measured diffraction data. Inevitable small
misalignments of u and h axes in real diffractometers
equipped with programs assuming ideal geometries do
not cause serious errors in routine measurements owing
to the large divergence of the graphite-monochromated
X-ray beams (Katrusiak & Ryan, 1988) and to the
applied scanning techniques. However, for larger u=h
misalignments, or when low divergence beams are
applied, e.g. at synchrotrons or from low mosaicity
monochromators, precise formulae accounting for the
misalignments are indispensable. Another straightfor-
ward application of the formulae are precise transfor-
mations between different goniometer geometries. To
facilitate their use, two transformation procedures have
been described, based on: (i) direct transformations and
(ii) w-angle rotations. The ®rst one is an ef®cient way of
running diffractometer programs, the second is an easy
method for applying the transformations by rotating
angle w.

Fig. 7. A positioning mode of the GED goniometer. Vector h is ®rst
rotated around the un axis to reach the e1e3 plane, then rotated
around the n axis to reach the e1e2 plane, and ®nally is brought by a
rotation about axis xn to the e2 direction.
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Finally, it can be remarked that a further step in the
general description of four-circle diffractometer rota-
tions would be explicit introduction of the x=h mis-
alignments and the possible deviations of the primary
beam. Owing to the mechanical construction of the
diffractometers, the x=h misalignments are usually
negligibly small compared to the �-angle magnitudes,
while a possible inclination of the primary beam from
the detector plane can be eliminated or accounted for in
calculations (Declercq et al., 1986). On the other hand, it
can be anticipated that the introduction of all the
possible instrumental misalignments will considerably
increase the complexity of the formulae, much more
than introduction of angle � only in the formulae
presented in this paper. Certain of these general features
are being naturally introduced into the formalism of a
six-circle diffractometer. The general formulation of the
equation can also be applied for designing new goni-
ometers with new � and � angles and for predicting their
mechanical conditions or their limitations of access to
reciprocal space.

This work is part of joint project of the Adam
Mickiewicz University in PoznanÂ and the University in
Lausanne on high-pressure studies at the Swiss±
Norwegian Beam Line at ESRF, Grenoble. We grate-

fully acknowledge support from the Swiss National
Science Foundation, grant No. 7PLPJ0484403.
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